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Image restoration
by matching gradient distributions
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Abstract—The restoration of a blurry or noisy image is commonly performed with a MAP estimator, which maximizes a posterior
probability to reconstruct a clean image from a degraded image. A MAP estimator, when used with a sparse gradient image
prior, reconstructs piecewise smooth images and typically removes textures that are important for visual realism. We present an
alternative deconvolution method called iterative distribution reweighting (IDR) which imposes a global constraint on gradients so that
a reconstructed image should have a gradient distribution similar to a reference distribution. In natural images, a reference distribution
not only varies from one image to another, but also within an image depending on texture. We estimate a reference distribution directly
from an input image for each texture segment. Our algorithm is able to restore rich mid-frequency textures. A large scale user study
supports the conclusion that our algorithm improves the visual realism of reconstructed images compared to those of MAP estimators.

Index Terms—Non-blind deconvolution, image prior, image deblurring, image denoising

✦

1 INTRODUCTION

Images captured with today’s cameras typically contain some
degree of noise and blur. In low-light situations, blur due to
camera shake can ruin a photograph. If the exposure time is
reduced to remove blur due to motion in the scene or camera
shake, intensity and color noise may be increased beyond
acceptable levels. The act of restoring an image to remove
noise and blur is typically an under-constrained problem.
Information lost during a lossy observation process needs to be
restored with prior information about natural images to achieve
visual realism. Most Bayesian image restoration algorithms
reconstruct images by maximizing the posterior probability,
abbreviated MAP. Reconstructed images are called the MAP
estimates.

One of the most popular image priors exploits the heavy-tailed
characteristics of the image’s gradient distribution [7], [21],
which are often parameterized using a mixture of Gaussians or
a generalized Gaussian distribution. These priors favor sparse
distributions of image gradients. The MAP estimator balances
the observation likelihood with the gradient prior, reducing
image deconvolution artifacts such as ringing and noise. The
primary concern with this technique is not the prior itself,
but the use of the MAP estimate. Since the MAP estimate
penalizes non-zero gradients, the images often appear overly
smoothed with abrupt step edges resulting in a cartoonish
appearance and a loss of mid-frequency textures, Figure 1.

In this paper, we introduce an alternative image restoration
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Fig. 1: The gradient distribution of images reconstructed
using the MAP estimator can be quite different from that
of the original images. We present a method that matches
the reconstructed image’s gradient distribution to that of the
desired gradient distribution (in this case, that of the original
image) to hallucinate visually pleasing textures.

strategy that is capable of reconstructing visually pleasing
textures. The key idea is not to penalize gradients based on a
fixed gradient prior [7], [21], but to match the reconstructed
image’s gradient distribution to the desired distribution [39].
That is, we attempt to find an image that lies on the manifold
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of solutions with the desired gradient distribution, which maxi-
mizes the observation likelihood. We propose two approaches.
The first penalizes the gradients based on the KL divergence
between the empirical and desired distributions. Unfortunately,
this approach may not converge or may find solutions with
gradient distributions that vary significantly from the desired
distribution. Our second approach overcomes limitations of
the first approach by defining a cumulative penalty function
that gradually pushes the parameterized empirical distribution
towards the desired distribution. The result is an image with
a gradient distribution that closely matches that of the desired
distribution.

A critical problem in our approach is determining the desired
gradient distribution. To do this we borrow a heuristic from
Cho et. al. [4] that takes advantage of the fact that many
textures are scale invariant. A desired distribution is computed
using a downsampled version of the image over a set of
segments. We demonstrate our results on several image sets
with both noise and blur. Since our approach synthesizes
textures or gradients to match the desired distribution, the peak
signal-to-noise ratio (PSNR) and gray-scale SSIM [37] may
be below other techniques. However, the results are generally
more visually pleasing. We validate these claims using a user
study comparing our technique to those reconstructed using
the MAP estimator.

2 RELATED WORK

2.1 Image denoising

Numerous approaches to image denoising have been proposed
in the literature. Early methods include decomposing the image
into a set of wavelets. Low amplitude wavelet values are sim-
ply suppressed to remove noise in a method call coring [30],
[35]. Other techniques include anisotropic diffusion [26] and
bilateral filtering [36]. Both of these techniques remove noise
by only blurring neighboring pixels with similar intensities,
resulting in edges remaining sharp. The FRAME model [41]
showed Markov Random Field image priors can be learned
from image data to perform image reconstruction. Recently,
the Field of Experts approach [31] proposed a technique to
learn generic and expressive image priors for traditional MRF
techniques to boost the performance of denoising and other
reconstruction tasks.

The use of multiple images has also been proposed in the
literature to remove noise. Petschnigg et. al. [27] and Eise-
mann et. al. [6] proposed combining a flash and non-flash
image to produce reduced noise and naturally colored images.
Bennett et. al. [1] use multiple frames in a video to denoise,
while Joshi and Cohen [14] combined hundreds of still images
to create a single sharp and denoised image. In this paper, we
only address the tasks of denoising and deblurring from a
single image.

2.2 Image deblurring

Blind image deconvolution is the combination of two prob-
lems: estimating the blur kernel or PSF, and image deconvo-
lution. A survey of early work in these areas can be found
in Kundur and Hatzinakos [18]. Recently, several works have
used gradient priors to solve for the blur kernel and to aid
in deconvolution [7], [16], [21]. We discuss these in more
detail in the next section. Joshi et. al. [15] constrained the
computation of the blur kernel resulting from camera shake
using additional hardware. A coded aperture [21] or fluttered
shutter [29] may also be used to help in the estimation of the
blur kernel or in deconvolution. A pair of images with high
noise (fast exposure) and camera shake (long exposure) was
used by Yuan et. al. [40] to aid in constraining deconvolution.
Approaches by Whyte et. al. [38] and Gupta et. al. [11]
attempt to perform blind image deconvolution with spatially
variant blur kernels, unlike most previous techniques that
assume spatially invariant kernels. In our work, we assume the
blur kernel, either spatially variant or invariant, is known or
computed using another method. We only address the problem
of image deconvolution.

2.3 Gradient priors

The Wiener filter [10] is a popular image reconstruction
method with a closed form solution. The Wiener filter is a
MAP estimator with a Gaussian prior on image gradients,
which tends to blur edges and causes ringing around edges
because those image gradients are not consistent with a
Gaussian distribution.

Bouman and Sauer [2], Chan and Wong [3], and more recently
Fergus et. al. [7] and Levin et. al. [21], use a heavy-tailed
gradient prior such as a generalized Gaussian distribution [2],
[21], a total variation [3], or a mixture of Gaussians [7]. MAP
estimators using sparse gradient priors preserve sharp edges
while suppressing ringing and noise. However, they also tend
to remove mid-frequency textures, which causes a mismatch
between the reconstructed image’s gradient distribution and
that of the original image.

2.4 Matching gradient distributions

Matching gradient distributions has been addressed in the
texture synthesis literature. Heeger and Bergen [13] synthesize
textures by matching wavelet sub-band histograms to those of
the desired texture. Portilla and Simoncelli [28] match joint
statistics of wavelet coefficients to synthesize homogeneous
textures. Kopf et. al. [17] introduce a non-homogeneous tex-
ture synthesis technique by matching histograms of texels (or
elements of textures).

Matching gradient distributions in image restoration is not
entirely new. Li and Adelson [22] introduce a two-step image
restoration algorithm that first reconstructs an image using
an exemplar-based technique similar to Freeman et. al. [9],
and warps the reconstructed image’s gradient distribution to

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 20XX 3

a reference gradient distribution using Heeger and Bergen’s
method [13].

A similarly motivated technique to ours is proposed by Wood-
ford et. al. [39]. They use a MAP estimation framework
called a marginal probability field (MPF) that matches a
histogram of low-level features, such as gradients or texels,
for computer vision tasks including denoising. While both
Woodford et. al. and our techniques use a global penalty
term to fit the global distribution, MPF requires that one
bins features to form a discrete histogram. This may lead
to artifacts with small gradients. Our distribution matching
method by-passes this binning process using parameterized
continuous functions. Also, Woodford et. al. [39] use an image
prior estimated from a database of images and use the same
global prior to reconstruct images with different textures.
In contrast, we estimate the image prior directly from the
degraded image for each textured region. Schmidt et. al. [34]
match the gradient distribution through sampling, which may
be computationally expensive in practice. As with Woodford
et. al. [39], Schmidt et. al. also use a single global prior to
reconstruct images with different textures, which causes noisy
renditions in smooth regions. HaCohen et. al. [12] explicitly
integrate texture synthesis to image restoration, specifically
for an image up-sampling problem. To restore textures, they
segment a degraded image and replace each texture segment
with textures in a database of images.

3 CHARACTERISTICS OF MAP ESTIMATORS

In this section, we illustrate why MAP estimators with a
sparse prior recover unrealistic, piecewise smooth renditions
as illustrated in Figure 1. Let B be a degraded image, k
be a blur kernel, ⊗ be a convolution operator, and I be a
latent image. A MAP estimator corresponding to a linear
image observation model and a gradient image prior solves
the following regularized problem:

Î = argmin
I

{
‖B− k⊗ I‖2

2η2 +w∑
m

ρ(∇mI)

}
, (1)

where η2 is an observation noise variance, m indexes gradient
filters, and ρ is a robust function that favors sparse gradients.
We parameterize the gradient distribution using a generalized
Gaussian distribution. In this case, ρ(∇I) = − ln(p(∇I;γ,λ )),
where the prior p(∇I;γ,λ ) is given as follows:

p(∇I;γ,λ ) =
γλ

( 1γ )

2Γ( 1γ )
exp(−λ |∇I|γ). (2)

Γ is a Gamma function and shape parameters γ,λ determine
the shape of the distribution. In most MAP-based image recon-
struction algorithms, gradients are assumed to be independent
for computational efficiency: p(∇I;γ,λ ) = 1

Z ∏N
i=1 p(∇Ii;γ,λ ),

where i is a pixel index, Z is a partition function, and N is the
total number of pixels in an image.

A MAP estimator balances two competing forces: the recon-
structed image Î should satisfy the observation model while

conforming to the image prior. Counter-intuitively, the image
prior term, assuming independence among gradients, always
favors a flat image to any other image, even a natural image.
Therefore, the more the MAP estimator relies on the image
prior term, which is often the case when the image degradation
is severe, the more the reconstructed image becomes piecewise
smooth.

One way to explain this property is that the independence
among local gradients fails to capture the global statistics of
gradients for the whole image. The image prior tells us that
gradients in a natural image collectively exhibit a sparse gradi-
ent profile, whereas the independence assumption of gradients
forces us to minimize each gradient independently, always
favoring a flat image. Nikolova [25] provides a theoretic
treatment of MAP estimators in general to show its deficiency.

We could remove the independence assumption and impose a
joint prior on all gradients, but this approach is computation-
ally expensive. This paper introduces an alternative method to
impose a global constraint on gradients – that a reconstructed
image should have a gradient distribution similar to a reference
distribution.

4 IMAGE RECONSTRUCTION

In this section, we develop an image reconstruction algorithm
that minimizes the KL divergence between the reconstructed
image’s gradient distribution and its reference distribution.
This distance penalty plays the role of a global image prior
that steers the solution away from piecewise smooth images.

Let qE(∇I) be an empirical gradient distribution of an image I,
and qD be a reference or desired distribution. We measure the
distance between distributions qE and qD using the Kullback-
Leibler (KL) divergence:

KL(qE ||qD) =

∫
x
qE(x) ln

(
qE(x)
qD(x)

)
dx. (3)

An empirical distribution qE is parameterized using a general-
ized Gaussian distribution p(∇I;γ,λ ) (Eq. 2). Given gradient
samples, ∇Ii, where i indexes samples, we estimate the shape
parameters γE ,λE of an empirical gradient distribution qE by
maximizing the log-likelihood:

[γE ,λE ] = argmin
γ ,λ

{
−

N

∑
i=1

1
N
ln(p(∇Ii;γ,λ ))

}
. (4)

This is equivalent to minimizing the KL divergence between
gradient samples ∇I and a generalized Gaussian distribution.
We use the Nelder-Mead optimization method [19] to solve
Eq. 4.

4.1 Penalizing the KL divergence directly

To motivate our algorithm in Section 4.2, we first introduce a
method that penalizes the KL divergence between an empirical
gradient distribution qE and a reference distribution qD. We

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 20XX 4

Algorithm 1 MAP with KL penalty
% Initial image estimate to start iterative minimization
Î0 = argminI

{
‖B−k⊗I‖2

2η2 +w1λD|∇I|γD
}

Update qE0 using Eq. 4
% Iterative minimization
for l = 1 ... 10 do
% KL distance penalty term update

ρ l
G(∇I) = 1

N ln
(
qE (l−1)(∇I)
qD(∇I)

)
% Image reconstruction
Îl = argminI

{
‖B−k⊗I‖2

2η2 +w1λD|∇I|γD +w2ρ l
G(∇I)

}
Update qE l using Eq. 4

end for
Î = Î10

show that the performance of this algorithm is sensitive to
the parameter setting and that the algorithm may not always
converge. In Section 4.2, we extend this algorithm to a
more stable approach called Iterative Distribution Reweighting
(IDR) for which the found empirical distribution is closer to
qD.

We can penalize the KL divergence between qE and qD by
adding a term to the MAP estimator in Eq. 1

Î = argmin
I

{
‖B− k⊗ I‖2

2η2 +w1λD|∇I|γD +w2KL(qE ||qD)

}
,

(5)

where w2 determines how much to penalize the KL diver-
gence.1 It’s hard to directly solve Eq. 5 because the KL diver-
gence is a non-linear function of a latent image I. Therefore
we solve Eq. 5 iteratively.

Using the set ∇I as a non-parametric approximation of qE and
Eq. 3, we estimate KL(qE ||qD) using

KL(qE ||qD) ≈
N

∑
i

ρG(∇Ii) =
N

∑
i

{
1
N
ln

(
qE(∇Ii)
qD(∇Ii)

)}
, (6)

where ρG(∇Ii) is the energy associated with a KL divergence
for each gradient sample ∇Ii.

Algorithm 1 shown using pseudocode, iteratively computes
the values of ρG(∇Ii) using the previous iteration’s empirical
distribution qE (l−1), followed by solving Eq. 5. The accuracy
of our approximation of KL(qE ||qD) is dependent on two
factors. The first is the number of samples in ∇I. As we discuss
later in Section 4.3 we may assume a significant number of
samples, since the value of Eq. 6 is computed over large
segments in the image. Second, the parametrization of qE is
computed from the previous iteration’s samples. As a result,
the approximation becomes more accurate as the approach
converges.

Using ρG(∇I), we can describe Algorithm 1 qualitatively as

1. In Eq. 5, we have replaced the summation over multiple filters in Eq. 1,
i.e. ∑m λm|∇mI|γm , with a single derivative filter to reduce clutter, but the
derivation can easily be generalized to using multiple derivative filters. We
use four derivative filters in this work: x, y derivative filters and x-y, and y-x
diagonal derivative filters.
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Fig. 3: We illustrate the operation of Algorithm 1 in terms
of the γE ,λE progressions. Different colors correspond to
different gradient filters. Oftentimes, Algorithm 1 does not
converge to a stable point, but oscillates around the desired
solution.

follows: if qE has more gradients of a certain magnitude
than qD, ρG penalizes those gradients more; if qE has fewer
gradients of a certain magnitude than qD, they receive less
penalty. Therefore, the approach favors distributions qE close
to qD. Figure 2 illustrates the procedure. The full derivation of
the algorithm details is available in the supplemental material.

4.1.1 Algorithm analysis

To provide some intuition for the behavior of Algorithm 1,
consider the case when qE approaches qD. The cost function
ρG will approach zero. The result is a loss of influence for
the cost related to the KL divergence, and qE may not fully
converge to qD. qE can be forced arbitrarily close to qD by
increasing the weight w2 and reducing the influence of the
other terms. Unfortunately, when w2 is large, the algorithm
oscillates around the desired solution (Figure 3). Even if
under-relaxation techniques are used to reduce oscillations,
qE may be significantly different from qD for reasonable
values of w2. If w2 is too large, the linearized system (in
supplemental material, (11)) becomes indefinite, in which case
the minimum residual method [33] cannot be used to solve the
linearized system. To mitigate the reliability issue and to damp
possible oscillations around the desired solution, we develop
an iterative distribution reweighting algorithm.

4.2 The iterative distribution reweighting (IDR)

In this section, we propose a second approach called Iterative
Distribution Reweighting (IDR) that solves many of the short-
comings of Algorithm 1. Previously, we minimized a global
energy function that only penalized empirical distributions
that diverged from qD. As discussed in Section 4.1.1, this
approach may not converge, or upon convergence the found
gradient distribution may vary significantly from qD. Our
second approach can be interpreted as minimizing the data cost
function from Eq. 1, while actively pushing the parameterized
empirical distribution qE towards our reference distribution qD,

Î = argmin
I

{
‖B− k⊗ I‖2

2η2

}
, (7)
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Fig. 2: This figure illustrates Algorithm 1. Suppose we deconvolve a degraded image using a MAP estimator. (b) shows that
the x-gradient distribution of the MAP estimate in (a) does not match that of the original image. (c) Our algorithm adds the
log ratio of qE and qD to the original penalty (i.e., λD|∇I|γD) such that the weighted sum of the two penalty terms encourages
a better distribution match in the following iteration. qD is set to the ground truth distribution.

(a) IDR estimate (b) Gradient distribution (c) Effective penalty
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Fig. 4: The IDR deconvolution result. (a) shows the deconvolved image using IDR, and (b) compares the gradient distribution
of images reconstructed using the MAP estimator and IDR. (c) The effective penalty after convergence (i.e. w1λD|∇I|γD +

w2 ∑10
l=1

1
N ln

(
qE l(∇I)
qD(∇I)

)
) penalizes gradients with small and large magnitude more than gradients with moderate magnitude. qD

is set to the ground truth distribution.

s.t. qE = qD.

That is, our goal is to find a solution that lies on the manifold
of solutions defined by qE = qD that minimizes Eq. 7. In this
paper, we do not claim to find the global minimum along
the manifold, but in practice we find our heuristic to provide
solutions that have a low energy with qE ≈ qD.

While conceptually quite different from Algorithm 1, the
approaches are similar in implementation. As in the KL
divergence term of Algorithm 1, we add an additional cost
function to Eq. 7 using the ratio of the distributions qE and
qD. However, instead of penalizing the KL divergence between
qE and qD directly, we propose a new cumulative cost function
ρ̂G. During each iteration, we update ρ̂G to push qE closer to
qD by examining the parameterized empirical distribution from
the previous iteration. For instance, if the empirical probability
of a set of gradients is too high relative to qD in the current
iteration, their penalty is increased in the next iteration. Our

new cost function ρ̂ l
G is

ρ̂ l
G(∇I) = ρ̂

(l−1)
G (∇I)+w2

1
N
ln

(
qE (l−1)(∇I)
qD(∇I)

)
, (8)

where
ρ̂0
G(∇I) = w1λD|∇I|γD . (9)

The first term of Eq. 8 is the cost function from the previous
iteration. The second term updates the cost function using the
ratio between qD and the parameterized gradient distribution
resulting from the use of ρ̂

(l−1)
G . We initialize ρ̂0

G using the
gradient prior from Eq. 1 to bias at the outset results with
sparse gradients. In practice λD and γD my be set using the
parameters of the reference distribution, or simply set to some
default values. As discussed in Section 4.3, we kept them fixed
to default values for use in estimating qD. Combining Equation
Eq. 7 with our new cost function ρ̂G, our new approach
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Algorithm 2 The iterative distribution reweighting (IDR)
% Initial image estimate to start iterative minimization
Î0 = argminI

{
‖B−k⊗I‖2

2η2 +w1λD|∇I|γD
}

Update qE0 using Eq. 4
% Iterative minimization
for l = 1 ... 10 do
% Accumulating the KL divergence

ρ̂ l
G(∇I) = ρ̂

(l−1)
G (∇I)+w2

1
N ln

(
qE (l−1)(∇I)
qD(∇I)

)
% Image reconstruction
Îl = argminI

{
‖B−k⊗I‖2

2η2 +ρ l
G(∇I)

}
Update qE l using Eq. 4

end for
Î = Î10

iteratively solves

Î = argmin
I

{
‖B− k⊗ I‖2

2η2 + ρ̂G(∇I)

}
, (10)

as shown in pseudocode by Algorithm 2. IDR iteratively
adjusts the penalty function ρ̂G by the ratio of distributions
qE and qD using a formulation similar to the previous ap-
proach using KL divergence Eq. 6, thus the name iterative
distribution reweighting (IDR). The detailed derivations in the
supplemental material, Section 3, can be easily modified for
use with Algorithm 2.

Examining Eq. 8, if the parameterized empirical distribution
qE is equal to qD, ρ̂ l

G is equal to the cost function from the
previous iteration, ρ̂ l−1

G . As a result, the desired solution qE =
qD is a stable point for IDR2. It is worth noting that when
qE = qD, ρ̂G will not be equal to the sparse gradient prior, as
occurs for the gradient priors in Algorithm 1 since ρG = 0.
Consequently, Algorithm 2 can converge to solutions with qE
arbitrarily close to qD for various values of w2. The value of
w2 may also be interpreted differently for both algorithms.
In Algorithm 1, w2 controls the strength of the bias of qE
towards qD, where w2 controls the rate qE converges to qD in
Algorithm 2. That is, even for small values of w2, Algorithm 2
typically converges to qE ≈ qD.

We illustrate the operation of IDR in Figure 4, and show how
γE ,λE changes from one iteration to the next in Figure 5.
Observe that γE ,λE no longer oscillates as in Figure 3. In
Figure 4, we show the original penalty function and its value
after convergence. Note it is not equal to the sparse gradient
prior and significantly different from the penalty function
found by Algorithm 1, Figure 2.

In Figure 6, we test IDR for deblurring a single texture,
assuming that the reference distribution qD is known a priori.
We synthetically blur the texture using the blur kernel shown
in Figure 8 and add 5% Gaussian noise to the blurred image.
We deblur the image using a MAP estimator and using IDR,
and compare the reconstructions. For all examples in this
paper, we use w1 = 0.025,w2 = 0.0025. We observe that the

2. This statement does not mean that the algorithm will converge only if
qE = qD; the algorithm can converge to a local minimum.

(a) Progression of Gamma (b) Progression of Lambda
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Fig. 5: This figure shows how the γE ,λE progress from one
iteration to the next. Different colors correspond to different
gradient filters. We observe that the algorithm converges to a
stable point in about 8 iterations.

gradient distribution of the IDR estimate matches the reference
distribution better than that of the MAP estimate, and visually,
the texture of the IDR estimate better matches the original
image’s texture. Although visually superior, the peak signal-
to-noise ratio (PSNR) and gray-scale SSIM [37] of the IDR
estimate are lower than those of the MAP estimate. This
occurs because IDR may not place the gradients at exactly
the right position. Degraded images do not strongly constrain
the position of gradients, in which case our algorithm disperses
gradients to match the gradient distribution, resulting in lower
PSNR and SSIM measures.

4.2.1 Algorithm analysis

IDR matches a parametrized gradient distribution qE , and
therefore the algorithm is inherently limited by the accuracy
of the fit. The behavior of IDR is relatively insensitive to the
weighting term w2, since w2 no longer controls how close qE
is to qD, but the rate at which qE approaches qD. Similarly
to Algorithm 1, a large w2 can destabilize the minimum
residual algorithm [33] that solves the linearized system in
Supplemental material, (11).

In most cases, IDR reliably reconstructs images with the
reference gradient distribution. However, there are cases in
which the algorithm settles at a local minimum that does not
correspond to the desired texture. This usually occurs when the
support of the derivative filters is large and when we use many
derivative filters to regularize the image. For instance, suppose
we want to match the gradient histogram of a 3× 3 filter.
The algorithm needs to update 9 pixels to change the filter
response at the center pixel, but updating 9 pixels also affects
filter the responses of 8 neighboring pixels. Having to match
multiple gradient distributions at the same time increases
the complexity and reduces the likelihood of convergence.
To control the complexity, we match four two-tap derivative
filters. Adapting derivative filters to local image structures
using steerable filters [4], [8], [32] may further improve the
rendition of oriented textures, but it is not considered in this
work.
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Fig. 6: We compare the deblurring performance of a MAP estimator and IDR. IDR reconstructs visually more pleasing
mid-frequency textures compared to a MAP estimator.
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Fig. 7: For an image with spatially varying texture, our algorithm segments the image into regions of homogeneous texture and
matches the gradient distribution in each segment independently. Compared to MAP estimators, our algorithm reconstructs
visually more pleasing textures.

4.3 Reference distribution qD estimation

We parameterize a reference distribution qD using a general-
ized Gaussian distribution. Unfortunately, one often does not
know a priori what qD should be. Previous work estimates
qD from a database of natural images [7], [39] or hand-picks
qD through trial and error [21]. We adopt the image prior
estimation technique introduced in Cho et. al. [4] to estimate
qD directly from a degraded image, as we will now describe.

It is known that many textures are scale invariant due to the
fractal properties of textures and piecewise smooth properties
of surfaces [20], [24]. That is, the gradient profiles are roughly
equal across scales, whereas the affect of deconvolution noise
tends to be scale variant. Cho et. al. [4] propose deconvolving
an image, followed by downsampling. The downsampled
image is then used to estimate the gradient distribution. The
result is the scale invariant gradient distribution is maintained,
while the noise introduced by deconvolution is reduced during
downsampling. This approach will result in incorrect distribu-
tions for textures that are not scale invariant, such as brick
textures, but produces reasonable results for many real-world
textures.

When deconvolving the degraded image B we use a MAP
estimator (Eq. 1) with a hand-picked image prior, tuned to
restore different textures reasonably well at the expense of
a slightly noisy image reconstruction (i.e., a relatively small
gradient penalty). In this paper, we set the parameters of the
image prior as [γ = 0.8,λ = 4,w1 = 0.01] for all images. We
fit gradients from the down-sampled image to a generalized
Gaussian distribution, as in Eq. 4, to estimate the reference
distribution qD. While fine details can be lost through down-
sampling, empirically, the estimated reference distribution qD
is accurate enough for our purpose.

Our image reconstruction algorithm assumes that the texture
is homogeneous (i.e., a single qD). In the presence of multiple
textures within an image, we segment the image and estimate
separate reference distributions qD for each segment: we
use the EDISON segmentation algorithm [5] to segment an
image into about 20 regions. Figure 7 illustrates the image
deconvolution process for spatially varying textures. Unlike
Cho et. al. [4] we cannot use a per-pixel gradient prior, since
we need a large area of support to compute a parameterized
empirical distribution qE in Eq. 8. However, Cho et. al. [4] use
the standard MAP estimate, which typically does not result in
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MAP estimate - Fixed sparse prior

PSNR : 28.60dB, SSIM : 0.757

MAP estimate - Adjusted sparse prior

PSNR : 28.68dB, SSIM : 0.759

IDR reconstruction

PSNR : 27.91dB, SSIM : 0.741

Original image

MAP estimate - two-color prior

PSNR : 28.30 dB, SSIM : 0.741

MAP estimate - Content-aware prior

PSNR : 29.08dB, SSIM : 0.761

Fig. 8: We compare the performance of IDR against four other competing methods: (i) a MAP estimator with a sparse gradient
prior [21], (ii) a MAP estimator with a sparse prior adapted to each segment, (iii) a MAP estimator with a two-color prior
[16], (iv) a MAP estimator with a content-aware image prior. The red box indicate the cropped regions. Although the PSNR
and the SSIM of our results are often lower than those using MAP estimators, IDR restores more visually pleasing textures
(see bear furs).

images that contain the desired distribution.

5 EXPERIMENTS

5.1 Deconvolution experiments

We synthetically blur sharp images with the blur kernel
shown in Figure 8, add 2% noise, and deconvolve them using
competing methods. We compare the performance of IDR
against four other competing methods: (i) a MAP estimator
with a sparse gradient prior [21], (ii) a MAP estimator with a
sparse prior adapted to each segment (iii) a MAP estimator

with a two-color prior [16] (iv) a MAP estimator with a
content-aware image prior [4]. We blur a sharp image using
the kernel shown on the right, add 2% noise to it, and
restore images using the competing methods. Figure 8 shows
experimental results. As mentioned in Section 4.2, IDR does
not perform the best in terms of PSNR / SSIM. Nevertheless,
IDR reconstructs mid-frequency textures better, for instance
fur details. Another interesting observation is that the content-
aware image prior performs better, in terms of PSNR/SSIM,
than simply adjusting the image prior to each segment’s tex-
ture. By using the segment-adjusted image prior, we observe
segmentation boundaries that are visually disturbing. Another
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PSNR : 26.73 dB, SSIM : 0.811

MAP estimate - two-color prior

PSNR : 26.74dB, SSIM : 0.815

MAP estimate - Fixed sparse prior

PSNR : 26.88dB, SSIM : 0.814

MAP estimate - Adjusted sparse prior

PSNR : 26.35dB, SSIM : 0.801

IDR reconstruction

Original image

PSNR : 27.09 dB, SSIM : 0.821

MAP estimate - Content-aware prior

Fig. 9: We compare the performance of IDR against four other competing methods. As in Figure 8, IDR’s PSNR/SSIM are
lower than those of MAP estimators, but IDR restores visually more pleasing textures.

set of comparisons is shown in Figure 9.

In Figure 10, we compare the denoising performance of IDR to
that of a marginal probability field (MPF) by Woodford et. al.
[39] at two noise levels (their implementation only handles
grayscale, square images). Using MPF for denoising has two
drawbacks. First, MPF quantizes intensity levels and gradient
magnitudes to reduce computation. MPF quantizes 256 (8-bit)
intensity levels to 64 intensity levels (6-bit), and it bins 256
(8-bit) gradient magnitudes to 11 slots. These quantizations
can accentuate spotty noise in reconstructed images. IDR
adopts a continuous optimization scheme that does not require
any histogram binning or intensity quantization, therefore it
does not suffer from quantization noise. Second, Woodford
et. al. [39] estimate the reference gradient distribution from a

database of images, and use the same prior to denoise different
images. This can be problematic because different images have
different reference distributions qD, but MPF would enforce
the same gradient profile on them. Also, MPF does not adapt
the image prior to the underlying texture, treating different
textures the same way. Therefore, MPF distributes gradients
uniformly across the image, even in smooth regions, which
can be visually disturbing. IDR addresses these issues by
estimating a reference distribution qD from an input image
and by adapting qD to spatially varying texture.

At a high degradation level, such as a noise level of 31.4%, our
reference distribution estimation algorithm can be unstable. In
Figure 10(a), our qD estimation algorithm returns a distribution
that has more “large” derivatives and fewer “small” derivatives
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Fig. 10: Comparing the denoising performance of IDR to the marginal probability field (MPF) [39]. IDR generates a better
rendition of the spatially variant texture.

(dotted line in Figure 10), which manifests itself as a noisy
IDR reconstruction. In contrast, MPF restores a plausible
image, but this is somewhat coincidental in that the reference
distribution that MPF imposes is quite similar to that of the
original image.

At a more reasonable degradation level (15% noise), shown in
Figure 10(b), our algorithm estimates a reference distribution
that is very similar to that of the original image. Given a
more accurate reference distribution, IDR restores a visually
pleasing image. On the other hand, MPF restores a noisy
rendition because the reference distribution is quite different
from that of the original image. Also note that the gradient
distribution of the restored image in Figure 10(b) is very
similar to that of the restored image in Figure 10(a), which
illustrates our concern that using a single image prior for
different images would degrade the image quality.

In this work, we estimate the reference distribution qD as-
suming that the underlying texture is scale-invariant. Although
this assumption holds for fractal textures, it does not strictly
hold for other types of textures with a characteristic scale,
such as fabric clothes, ceramics, or construction materials. The
IDR algorithm is decoupled from the reference distribution
estimation algorithm. Therefore, if an improved reference
distribution estimation algorithm is available, the improved
algorithm can be used in place of the current distribution
algorithm without impacting the IDR algorithm itself.

Segmenting images to regions and deconvolving each region
separately may generate artificial texture boundaries, as in
Figure 11. While this rarely occurs, we could mitigate these
artifacts using a texture-based segmentation algorithm rather
than EDISON [5], which is a color-based segmentation algo-
rithm.

MAP estimator - fixed prior IDR

Fig. 11: We could observe an artificial boundary when the
estimated prior is different in adjacent segments that have
similar textures. While this rarely occurs, we could remove
such artifacts using a texture segmentation algorithm instead
of a color-based segmentation algorithm.

5.2 User study

IDR generates images with rich texture but with lower
PSNR/SSIM than MAP estimates. To test our impression that
images reconstructed by IDR are more visually pleasing, we
performed a user study on Amazon Mechanical Turk.

We considered seven image degradation scenarios: noisy ob-
servations with 5%, 10%, 15% noise, blurry observations with
a small blur and 2%,5%,7% noise, and a blurry observation
with a moderate-size blur and 2% noise. For each degradation
scenario, we randomly selected 4 images from a subset of
the Berkeley Segmentation dataset [23] (roughly 700× 500
pixels), and reconstructed images using a MAP estimator with
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Fig. 12: We conducted a user study to test our impression
that IDR reconstructions are visually more pleasing than MAP
estimates. The blue region corresponds to the fraction of
users that favored IDR over MAP estimators. When the image
degradation level is small, users did not show a particular
preference, but as the image degradation level increases, users
favored images reconstructed using IDR.

a fixed sparse prior (i.e., the same sparse prior across the whole
image), an adjusted sparse prior, and IDR.

We showed users two images side-by-side, one reconstructed
using our algorithm and another reconstructed using one of
the two MAP estimators (i.e., fixed or adjusted). We asked
users to select an image that is more visually pleasing and
give reasons for their choice. Users were also given a “No
difference.” option. We randomized the order in which we
place images side by side.

We collected more than 25 user inputs for each comparison,
and averaged user responses for each degradation scenario
(Figure 12). When the degradation level is low (5% noise or
a small blur with 2% noise), users did not prefer a particular
algorithm. In such cases, the observation term is strong enough
to reconstruct visually pleasing images regardless of the prior
and/or the reconstruction algorithm. When the degradation
level is high, however, many users clearly favored our results.
User comments pointed out that realistic textures in trees,
grass, and even in seemingly flat regions, such as gravel
paths, are important for visual realism. Users who favored
MAP estimates preferred clean renditions of flat regions and
were not disturbed by piecewise smooth textures (some even
found it artistic.) Individual users consistently favored either
our result or MAP estimates, suggesting that image evaluation
is subjective in nature.

6 CONCLUSION

We have developed an iterative deconvolution algorithm that
matches the gradient distribution. Our algorithm bridges the
energy minimization methods for deconvolution and texture
synthesis. We show through a user study that matching
derivative distribution improves the perceived quality of re-
constructed images. The fact that a perceptually better image

receives lower PSNR/SSIM suggests that there is a room for
improvement in image quality assessment.
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