Publications
Papers
Technical reports
2024
Open Catalyst Experiments 2024 (OCx24): Bridging Experiments and Computational Models
J. Abed, J. Kim, M. Shuaibi, B. Wander, B. Duijf, S. Mahesh, . Lee, V. Gharakhanyan, S. Hoogland, E. Irtem, J. Lan, N. Schouten, A. Vijayakumar, J. Hattrick-Simpers, J. Kitchin, Z. Ulissi, A. van Vugt, E. H. Sargent, D. Sinton, C. L. Zitnick
arXiv:2411.11783, 2024
Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models
L. Barroso-Luque, M. Shuaibi, X. Fu, B. Wood, M. Dzamba, M. Gao, A. Rizvi, C. L. Zitnick, Z. Ulissi
arXiv:2410.12771, 2024
CatTSunami: Accelerating Transition State Energy Calculations with Pre-trained Graph Neural Networks
B. Wander, M. Shuaibi, J. Kitchin, Z. Ulissi, C. L. Zitnick
arXiv:2405.02078, 2024
From molecules to materials: Pre-training large generalizable models for atomic property prediction
N. Shoghi, A. Kolluru, J. Kitchin, Z. Ulissi, C. L. Zitnick, B. Wood
ICLR, 2024 (arXiv:2310.16802)
Fine-Tuned Language Models Generate Stable Inorganic Materials as Text
N. Gruver, A. Sriram, A. Madotto, A. Wilson, C. L. Zitnick, Z. Ulissi
ICLR, 2024 (arXiv:2402.04379)
2023
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
S. Passaro, C. L. Zitnick
ICML, 2023 (arXiv:2302.03655)
Deep Learning Reconstruction Enables Prospectively Accelerated Clinical Knee MRI
P. Johnson, D. Lin, J. Zbontar, C. L. Zitnick, A. Sriram, M. Muckley, J. Babb, M. Kline, G. Ciavarra, E. Alaia, M. Samim, W. Walter, L. Calderon, T. Pock, D. Sodickson, M. Recht, F. Knoll
Radiology, 2023
The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysis
R. Tran, J. Lan, M. Shuaibi, B. Wood, S. Goyal, A. Das, J. Heras-Domingo, A. Kolluru, A. Rizvi, N. Shoghi, A. Sriram, Z. Ulissi, C. L. Zitnick
ACS Catalysis, 2023 (arXiv:2206.08917)
J. Lan, A. Palizhati, M. Shuaibi, B. Wood, B. Wander, A. Das, M. Uyttendaele, C. L. Zitnick, Z. Ulissi
Nature Computational Materials, 2023 (arXiv:2211.16486)
2022
Spherical Channels for Modeling Atomic Interactions
C. Lawrence Zitnick, A. Das, A. Kolluru, J. Lan, M. Shuaibi, A. Sriram, Z. Ulissi, B. Wood
NeurIPS, 2022 (arXiv:2206.14331)
A. Kolluru, M. Shuaibi, A. Palizhati, N. Shoghi, A. Das, B. Wood, C. L. Zitnick, J. Kitchin, Z. Ulissi
ACS Catalysis, 2022 (arXiv:2206.02005)
GemNet-OC: Developing Graph Neural Networks for Large and Diverse Molecular Simulation Datasets
J. Gasteiger, M. Shuaibi, A. Sriram, S. Günnemann, Z. Ulissi, C L. Zitnick, A. Das
TMLR, 2022 (arXiv:2204.02782)
Towards Training Billion Parameter Graph Neural Networks for Atomic Simulations
A. Sriram, A. Das, B. Wood, S. Goyal, C. L. Zitnick
ICLR, 2022 (arXiv:2203.09697)
Transfer learning using attentions across atomic systems with graph neural networks (TAAG)
A. Kolluru, N. Shoghi, M. Shuaibi, S. Goyal, A. Das, C. L. Zitnick, Z. Ulissi
Journal of Chemical Physics, 2022
2021
Rotation Invariant Graph Neural Networks using Spin Convolutions
M. Shuaibi, A. Kolluru, A. Das, A. Grover, A. Sriram, Z. Ulissi, C. L. Zitnick
arXiv:2106.09575, 2021
ForceNet: A Graph Neural Network for Large-Scale Quantum Calculations
W. Hu, M. Shuaibi, A. Das, S. Goyal, A. Sriram, J. Leskovec, D. Parikh, C. L. Zitnick
arXiv:2103.01436, 2021
Compositional Transformers for Scene Generation
D. Hudson, C. L. Zitnick
NeurIPS, 2021 (arXiv:2111.08960)
S. Ge, V. Goswami, C. L. Zitnick, D. Parikh
ICLR, 2021 (arXiv:2011.10039)
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
L. Chanussot, A. Das, S. Goyal, T. Lavril, M. Shuaibi, M. Riviere, K. Tran, J. Heras-Domingo, C. Ho, W. Hu, A. Palizhati, A. Sriram, B. Wood, J. Yoon, D. Parikh, C. L. Zitnick, Z. Ulissi
ACS Catalysis, 2021 (arXiv:2010.09990)
A. Rives, S. Goyal, J. Meier, D. Guo, M. Ott, C. L. Zitnick, J. Ma, R. Fergus
PNAS, 2021 (bioRxiv:622803)
2020
An Introduction to Electrocatalyst Design using Machine Learning for Renewable Energy Storage
C. L. Zitnick, L. Chanussot, A. Das, S. Goyal, J. Heras-Domingo, C. Ho, W. Hu, T. Lavril, A. Palizhati, M. Riviere, M. Shuaibi, A. Sriram, K. Tran, B. Wood, J. Yoon, D. Parikh, Z. Ulissi
arXiv:2010.09435, 2020
Using Deep Learning to Accelerate Knee MRI at 3T: Results of an Interchangeability Study
M. Recht, J. Zbontar, D. Sodickson, F. Knoll, N. Yakubova, A. Sriram, T. Murrell, A. Defazio, M. Rabbat, L. Rybak, M. Kline, G. Ciavarra, E. Alaia, M. Samim, W. Walter, D. Lin, Y. Lui, M. Muckley, Z. Huang, P. Johnson, R. Stern, C. L. Zitnick
American Journal of Roentgenology (AJR), 2020 (arXiv paper describing the approach)
Exploring Crowd Co-creation Scenarios for Sketches
D. Parikh, C. L. Zitnick
International Conference on Computational Creativity (ICCC), 2020 (arXiv:2005.07328)
End-to-End Variational Networks for Accelerated MRI Reconstruction
A. Sriram, J. Zbontar, T. Murrell, A. Defazio, C. L. Zitnick, N. Yakubova, F. Knoll, P. Johnson
MICCAI, 2020 (arXiv:2004.06688)
F. Knoll, T. Murrell, A. Sriram, N. Yakubova, J. Zbontar, M. Rabbat, A. Defazio, M. Muckley, D. Sodickson, C. L. Zitnick, M. Recht
Magnetic Resonance in Medicine, 2020 (arXiv:2001.02518)
GrappaNet: Combining Parallel Imaging with Deep Learning for Multi-Coil MRI Reconstruction
A. Sriram, J. Zbontar, T. Murrell, C. L. Zitnick, A. Defazio, D. Sodickson
CVPR, 2020 (arXiv:1910.12325)
F. Knoll, J. Zbontar, A. Sriram, M. Muckley, M. Bruno, A. Defazio, M. Parente, K. Geras, J. Katsnelson, H. Chandarana, Z. Zhang, M. Drozdzal, A. Romero, M. Rabbat, P. Vincent and J. Pinkerton, D. Wang, N. Yakubova, E. Owens, C. L. Zitnick, M. Recht, D. Sodickson, Y. Lui
Radiology Artificial Intelligence, 2020
2019
Order-Aware Generative Modeling Using the 3D-Craft Dataset
Z. Chen, D. Guo, T. Xiao, S. Xie, X. Chen, H. Yu, J. Gray, K. Srinet, H. Fan, J. Ma, C. R. Qi, S. Tulsiani, A. Szlam, C. L. Zitnick
ICCV, 2019
CraftAssist: A Framework for Dialogue-enabled Interactive Agents
J. Gray, K. Srinet, Y. Jernite, H. Yu, Z. Chen, D. Guo, S. Goyal, C. L. Zitnick, A. Szlam
arXiv:1907.08584, 2019
ELF OpenGo: An Analysis and Open Reimplementation of AlphaZero
Y. Tian, J. Ma, Q. Gong, S. Sengupta, Z. Chen, J. Pinkerton, C. L. Zitnick
ICML, 2019 (arXiv:1902.04522)
2018
fastMRI: An Open Dataset and Benchmarks for Accelerated MRI
J. Zbontar, F. Knoll, A. Sriram, M. Muckley, M. Bruno, A. Defazio, M. Parente, K. Geras, J. Katsnelson, H. Chandarana, Z. Zhang, M. Drozdzal, A. Romero, M. Rabbat, P. Vincent and J. Pinkerton, D. Wang, N. Yakubova, E. Owens, C. L. Zitnick, M. Recht, D. Sodickson, Y. Lui
arXiv:1811.08839, 2018
2017
ELF: An Extensive, Lightweight and Flexible Research Platform for Real-time Strategy Games
Y. Tian, Q. Gong, W. Shang, Y. Wu, C. L. Zitnick
NIPS, 2017. (arXiv)
Learn2Smile: Learning Non-Verbal Interaction Through Observation
W. Feng, A. Kannan, G. Gkioxari, C. L. Zitnick
IROS, 2017.
Inferring and Executing Programs for Visual Reasoning
J. Johnson, B. Hariharan, L. van der Maaten, J. Hoffman, L. Fei-Fei, C. L. Zitnick, R. Girshick
ICCV, 2017. (arXiv)
CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning
J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L. Zitnick, R. Girshick
CVPR, 2017. (arXiv)
2016
Measuring Machine Intelligence Through Visual Question Answering
C. L. Zitnick, A. Agrawal, S. Antol, M. Mitchell, D. Batra, D. Parikh
AI Magazine, 2016. (arXiv)
Human Attention in Visual Question Answering: Do Humans and Deep Networks Look at the Same Regions?
A. Das, H. Agrawal, C. L. Zitnick, D. Parikh, D. Batra
EMNLP, 2016. (arXiv)
Shuffle and Learn: Unsupervised Learning using Temporal Order Verification
I. Misra, C. L. Zitnick, M. Hebert
ECCV, 2016. (arXiv)
T. H. Huang, F. Ferraro, N. Mostafazadeh, I. Misra, A. Agrawal, J. Devlin, R. Girshick, X. He, P. Kohli, D. Batra, C. L. Zitnick, D. Parikh, L. Vanderwende, M. Galley, M. Mitchell
NAACL, 2016. (arXiv)
Seeing through the Human Reporting Bias: Visual Classifiers from Noisy Human-Centric Labels
I. Misra, C. L. Zitnick, M. Mitchell, R. Girshick
CVPR, 2016. (arXiv)
Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks
S. Bell, C. L. Zitnick, K. Bala, R. Girshick
CVPR, 2016. (arXiv)
We Are Humor Beings: Understanding and Predicting Visual Humor
A. Chandrasekaran, A. Kalyan, S. Antol, M. Bansal, D. Batra, C. L. Zitnick, D. Parikh
CVPR, 2016. (arXiv)
Reducing Overfitting in Deep Networks by Decorrelating Representations
M. Cogswell, F. Ahmed, R. Girshick, C. L. Zitnick, D. Batra
ICLR, 2016. (arXiv)
Adopting Abstract Images for Semantic Scene Understanding
C. L. Zitnick, R. Vedantam and D. Parikh
PAMI, 2016. (webpage)
2015
VQA: Visual Question Answering
S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, D. Parikh
Learning Common Sense Through Visual Abstraction
R. Vedantam, X. Lin, T. Batra, C. L. Zitnick, D. Parikh
ICCV, 2015. (webpage)
VISALOGY: Answering Visual Analogy Questions
F. Sadeghi, C. L. Zitnick, A. Farhadi
NIPS, 2015. (arXiv)
Mind's Eye: A Recurrent Visual Representation for Image Caption Generation
X. Chen and C.L. Zitnick
CVPR, 2015. (arXiv)
From Captions to Visual Concepts and Back
H. Fang, S. Gupta, F. Iandola, R. Srivastava, L. Deng, P. Dollár, J. Gao, X. He, M. Mitchell, J. Platt, C.L. Zitnick, and G. Zweig
CIDEr: Consensus-based Image Description Evaluation
R. Vedantam, C. L. Zitnick, and D. Parikh
Exploring Nearest Neighbor Approaches for Image Captioning
J. Devlin, S. Gupta, R. Girshick, M. Mitchell, C. L. Zitnick
arXiv:1505.04467 , 2015.
Microsoft COCO Captions: Data Collection and Evaluation Server
X. Chen, H. Fang, T.Y. Lin, R. Vedantam, S. Gupta, P. Dollar, C. L. Zitnick
2014
Microsoft COCO: Common Objects in Context
T.Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick
Zero-Shot Learning via Visual Abstraction
S. Antol, C. L. Zitnick, and D. Parikh
ECCV, 2014. (webpage)
Detecting Objects using Deformation Dictionaries
B. Hariharan, C. L. Zitnick, and P. Dollar
CVPR, 2014.
2013
Structured Forests for Fast Edge Detection
P. Dollar and C. L. Zitnick
ICCV, 2013. (code, supp. mat.)
Learning the Visual Interpretation of Sentences
C. L. Zitnick, D. Parikh, and L. Vanderwende
ICCV, 2013. (webpage, dataset, supp. mat.)
Handwriting Beautification Using Token Means
C. L. Zitnick
SIGGRAPH, 2013. (video, YouTube, talk slides, handwriting data)
Bringing Semantics Into Focus Using Visual Abstraction
C. L. Zitnick and D. Parikh
CVPR, 2013. (webpage, dataset, talk video, talk slides)
Sketch-Tokens: A Learned Mid-level Representation for Contour and Object Detection
J. Lim, C. L. Zitnick, and P. Dollar
CVPR, 2013. (code)
Exploring Weak Stabilization for Motion Feature Extraction
D. Park, C. L. Zitnick, D. Ramanan, and P. Dollar
CVPR, 2013.
A. Bansal, A. Kowdle, D. Parikh, A. C. Gallagher, and C. L. Zitnick
Workshop on 3D Representation and Recognition (3dRR), ICCV, 2013.
2012
Exploring the Spatial Hierarchy of Mixture Models for Human Pose Estimation
Y. Tian, C. L. Zitnick, and S. Narasimhan
ECCV, 2012. (webpage)
The Role of Image Understanding in Contour Detection
C. L. Zitnick and D. Parikh
CVPR, 2012. (Additional thoughts)
D. Parikh, C. L. Zitnick, and T. Chen
PAMI, 34(10):1978-1991, 2012.
Image Restoration by Matching Gradient Distributions
T. Cho, C. L. Zitnick, N. Joshi, S. B. Kang, R. Szeliski, and W. Freeman
PAMI, 34(4):683-694, 2012.
A Memory Efficient Discriminative approach for Location aided Recognition
V. Hedau, S. Sinha, C. L. Zitnick, and R. Szeliski
Workshop on Visual Analysis and Geo-Localization of Large-Scale Imagery, ECCV, 2012.
2011
ShadowDraw: Real-Time User Guidance for Freehand Drawing
Y. J. Lee, C. L. Zitnick, and M. Cohen
A Viewer-Centric Editor for Stereoscopic Cinema
S. J. Koppal, C. L. Zitnick, M.F. Cohen, S.B. Kang, B. Ressler, and A. Colburn
IEEE Computer Graphics and Applications, 2011. (webpage)
2010
A. Gupta, N. Joshi, C. L. Zitnick, M. Cohen, B.
Curless
ECCV, 2010. (webpage)
N. Joshi, S.B. Kang, C.L. Zitnick, and R. Szeliski
SIGGRAPH,
2010.
(webpage)
Image deblurring
with inertial measurement sensors
D. Parikh, and C. L. Zitnick
CVPR, 2010.
The Role of
Features, Algorithms and Data in Visual Recognition
T. Cho, N Joshi, C. L. Zitnick S. B. Kang, B.
Freeman, and R. Szeliski
CVPR, 2010. (webpage)
P. Bhat, C. L. Zitnick, M. Cohen, B. Curless
ACM Transactions on Graphics, 2010. (webpage)
GradientShop: A Gradient-Domain Optimization Framework for Image
and Video Filtering
2009
CVPR, 2009.
CVPR, 2009.
2008
D. Parikh, C. L. Zitnick, and T. Chen
ECCV, 2008.
Determining Patch Saliency Using Low-Level Context
P. Bhat, B. Curless, M. Cohen and C. L. Zitnick
ECCV, 2008
Fourier
Analysis of the 2D Screened Poisson
Equation for Gradient Domain Problems
Y. Taguchi, B. Wilburn and C. L. Zitnick
CVPR, 2008.
Stereo
Reconstruction with Mixed Pixels Using Adaptive Over-Segmentation
D. Parikh, C. L. Zitnick, and T. Chen
CVPR, 2008.
From
Appearance to Context-Based Recognition: Dense Labeling in Small
Images
C. Liu, R. Szeliski, S.B. Kang, C.L. Zitnick, and W.T. Freeman
PAMI 30(2):299-314, 2008.
Automatic estimation and removal of noise from a single image
G. Schindler, C. L. Zitnick, M. Brown
IEEE Workshop on Internet Vision (CVPR), 2008.
Internet Video Category Recognition
2007
P. Bhat, C. L. Zitnick, N. Snavely, A. Agarwala, M. Agarwala, B. Curless, M. Cohen, S. B. Kang
Eurographics
Symposium on Rendering (EGSR), 2007. (webpage)
Using Photographs to Enhance Videos of a Static Scene
C. L. Zitnick and S. B. Kang
IJCV 75(1):49-65, 2007.
Stereo for image-based rendering using image over-segmentation
2006
J. Sivic, C. L. Zitnick and R. Szeliski
BMVC, 2006.
Finding people in repeated shots of the same scene
V. Vaish, R. Szeliski, C. L. Zitnick, S.B. Kang, and M. Levoy
CVPR, 2006.
Reconstructing occluded surfaces using synthetic apertures: Shape from focus vs.
N. Jojic, J. Winn, C. L. Zitnick
CVPR, 2006.
N. Snavely, C. L. Zitnick, S. B. Kang, and M. Cohen
Int’l Symp. on Non-Photorealistic Animation and Rendering (NPAR), 2006. (video)
E. Bennett, M. Uyttendaele, C. L. Zitnick, R. Szeliski, and S. B. Kang
ECCV, 2006.
Video and Image Bayesian Demosaicing With A Two Color Image Prior
2005 and earlier
C. L. Zitnick, N. Jojic, S. B. Kang
ICCV, 2005. (webpage)
Consistent segmentation for optical flow estimation
C. L. Zitnick, S.B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski
High-quality video view interpolation using a
layered representation.
C. L. Zitnick, T. Kanade
Conference on Uncertainty in Artificial Intelligence (UAI), 2004.
Maximum Entropy for Collaborative Filtering
C. L. Zitnick, Thesis 2003.
Computing Conditional Probabilities in Large Domains by Maximizing Renyi's Quadratic Entropy
J. Gemmell, C. L. Zitnick, T. Kang, K. Toyama and Steven Seitz
IEEE MultiMedia, pp. 26-35, 2000.
Gaze-awareness for Videoconferencing: A Software Approach
C. L. Zitnick and T. Kanade
PAMI 22(7), 2000. (webpage)
A Cooperative Algorithm for Stereo Matching and Occlusion Detection
S. B. Kang, J. Webb, C. L. Zitnick, and T. Kanade
ICCV, 1995.
An Active multibaseline stereo system with real-time image acquisition
Videos
A
Framework for Encoding Object-level Image Priors
J. Yuen, C. L. Zitnick, C. Liu, A. Torralba
Tech. Report MSR-TR-2011-99, Microsoft Research, 2011
C. L. Zitnick, D. Parikh
Tech. Report MSR-TR-2011-98, Microsoft Research, 2011
Detecting
Objects using Unsupervised Parts-based Attributes
S. Divvala, C. L. Zitnick, A. Kapoor, and
S. Baker
Tech. Report CMU-RI-TR-11-10, Robotics Institute, Carnegie Mellon
University, 2010
Local Bi-gram Model for Object Recognition
Xiangyang Lan, C. L. Zitnick, Richard Szeliski
Tech. Report MSR-TR-2007-54, Microsoft Research, 2007
Object
instance recognition using triplets of feature symbols
C. L. Zitnick, Jie Sun, Richard Szeliski,
Simon Winder
Tech. Report MSR-TR-2007-53, Microsoft Research, 2007 (webpage)
Manipulation of Video Eye Gaze and Head Orientation for Video
Teleconferencing
C. L. Zitnick; Jim Gemmell;
Kentaro Toyama
tech.
report MSR-TR-99-46, Microsoft Research, 1999
A Cooperative
Algorithm for Stereo Matching and Occlusion Detection
C. L. Zitnick and T. Kanade
tech. report CMU-RI-TR-99-35, Robotics Institute, Carnegie Mellon
University, October, 1999.
A Volumetric
Iterative Approach to Stereo Matching and Occlusion Detection
C. L. Zitnick and T. Kanade
tech. report CMU-RI-TR-98-30, Robotics Institute, Carnegie Mellon
University, December, 1998.
Multi-baseline Stereo Using Surface Extraction
C. L. Zitnick and J.A. Webb
tech. report CMU-CS-96-196, Computer Science Department, Carnegie Mellon
University, 1996.
An Active Multibaseline Stereo System with
Real-Time Image Acquisition
S. Kang, J. Webb, C. L. Zitnick, and T. Kanade
tech. report CMU-CS-94-167, Computer Science Department, Carnegie Mellon
University,
Unpublished
Content-free Image Retrieval
C. L. Zitnick and T. Kanade, 2003